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Part 2. The detailed structure of the flow 
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The main experimental results of the study of periodic turbulent pipe flow have been 
described in Part 1 of this report. In  this second part, these experimental data are 
examined in greater detail to understand the effect of imposed oscillation on the flow 
structure, at moderate to large oscillation frequencies. Data on phase and amplitude 
and energy spectrum are used to study the effect of the imposed oscillation on the 
turbulence structure a t  these interactive frequencies of oscillation. Additional 
experiments which were performed to study the effect of oscillation frequency on the 
flow structure are also reported. Based on the present observations as well as on the 
data from other sources, it is inferred that turbulent shear flows respond very 
differently from laminar shear flows to imposed unsteadiness. A turbulent Stokes 
number relevant for characterizing the unsteady turbulent shear flows is identified 
and used to classify such flows. 

1. Introduction 
I n  Part 1 (Tu & Ramaprian 1983) of this two-part report the main results obtained 

from an experimental study of oscillatory flow of water in a long circular pipe (of 
diameter D) at a mean Reynolds number Re of about 50000 have been presented. 
These results were obtained at two oscillation frequencies f,, of 0.5 and 3.6 Hz with 
oscillation amplitudes 64 and 15 yo respectively. The sinusoidal oscillation of the flow 
around the mean was produced in each case by regulating the exit area at, the 
downstream end by a suitably designed rotating sleeve valve. Details of the 
experimental apparatus as well as the instrumentation for the measurement and 
processing of the velocity and wall-shear-stress data are given in Part 1. In the same 
paper are also given results obtained from numerical calculations using a quasi-steady 
turbulence model. 

I n  this paper the basic experimental data described in Part 1 are further processed 
to obtain more detailed information on the structure of periodic pipe flow. The aspects 
studied include phase and amplitude characteristics, and energy spectrum of the 
longitudinal turbulent intensity. Also, the results of a third series of experiments (in 
addition to those described in Part l ) ,  in which the oscillation frequency was varied 
from 0.5 to 3.0 Hz, are discussed. I n  these experiments, the amplitude of modulation 
was maintained approximately constant so that the effect of oscillation frequency 
could be studied in isolation. 
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2. Experimental and data-reduction procedures 
2.1. Amplitude and ph.ase calculations 

The iwiposd cross-sectional-average velocity ( Urn) in the present experiments is 
given by 

where urn is the time-mean cross-sectional-average velocity, yu, is the relative 
amplitude of cross-sectional-average velocity and f,, is the frequency of oscillation. 
If we consider only the fundamental (dominant) frequency, the ensemble-averaged 
velocity ( U )  a t  any point a t  radius r (or distance y from the wall) and a t  time t can 

where u i s  the time-mean velocity a t  the point, yu is the relative amplitude of the 
ensemble-average velocity and $ U ( y )  is the phase lead with respect to (tlrn). 
Higher-harmonic components in the velocity were found to  be very small. This was 
possible because of the careful design of the sleeve profile. However, it  has been shown 
in Part 1 that  other ensemble-average properties such as wall shear stress (7w), 
longitudinal turbulent intensity uk ( = (uz)i)  and Reynolds shear stress - (U.) 

(where 'u is turbulent velocity in the radial direction) showed some distortions from 
a sinusoidal variation. Nevertheless it was decided to study only the properties of 
the fundamental frequency even in these cases. Hence we now introduce the general 
expression 

(3) 

where ys and $x are the amplitude and phase angle of the property S, and 3 stands 
for IT, 7, or -uu, and wt = 2nf0,t = 0 represents the phase position in the cycle 
relative to the variation of ( Urn). For the longitudinal turbulence intensity, we define 

2.2. Series 3 experiments 
Series 2 experiments described in Part 1 were performed a t  two oscillation frequencies 
with the modulation of ( Urn) being 15 yo for 3.6 Hz and 64 yo for 0.5 Hz respectively. 
In  the third series of experiments (also performed a t  Re = 50000) the modulation of 
the discharge was kept approximately the same (about 25 yo) while the oscillation 
frequency was varied over a wide range. These experiments were conducted primarily 
to obtain information on the influence of oscillation frequency on the behaviour of 
the flow a t  the wall and near the centreline. Two different sleeve profiles were used 
in these experiments. These were designed to produce an exact sinusoidal modulation 
of discharge a t  f,, = 1.0 Hz and 2.5 Hz. The same sleeve profiles were also used for 
experiments a t  neighbouring frequencies of the designed frequency by assuming that 
the change in the amplitude of modulation and distortion are not large a t  these 
off-design frequencies. I n  all these cases, measurements were made (using laser-Doppler 
anemometry) a t  the centreline for velocity and a t  the wall (using a flush-mounted 
hot-film gauge) for the wall shear stress. Distribution of velocity across the pipe was 
not measured in these experiments. The same data acquisition procedures were used 
as those described in Part 1 for the other series of experiments. 
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2.3 .  Measurement of energy spectra 
Spectral density functions of the time-averaged Reynolds normal stress uf2, where 

were obtained a t  several locations across the pipe in the periodic flow and compared 
with those obtained in steady flow at the mean Reynolds number. I n  each case, two 
spectra were obtained a t  each location - one spectrum with a fine resolution giving 
the energy distribution in the lower frequency range, and the other a broad spectrum 
extending to higher frequencies. Later these two spectra were patched together to 
construct one composite spectrum that provided the required resolution and 
bandwidth. Also spectra were obtained both before and after the periodic component 
was removed from the LDA output. 

The spectra were obtained by the fast Fourier transform (FFT) technique using 
1024 points in the time-series data output by the LDA. The spectra were averaged 
over 95-190 realizations. Standard procedures (see e.g. Bendat & Piersol 1971) for 
sampling, low-pass filtering and smoothing were used. Further, the spectral 
measurements obtained in steady pipe flow a t  a Reynolds number of 50000 were 
compared with the data of Lawn (1971) and were found to be in good agreement. 
The experimental procedures as well as several tests to ensure the accuracy of the 
spectral measurements are described in Ramaprian & Tu (1982). 

3. Results and discussion 

3.1.1. Velocities 
Figure 1 (a )  shows the amplitude distributions of velocity across the pipe for the 

two frequencies of oscillation. The quantity plotted is the amplitude of local velocity 
yu u normalized by the amplitude of cross-sectional-averaged velocity yu, urn. It 
is seen that an overshoot in amplitude occurs in both the experiments. The location 
qs of the overshoot from the wall differs because of the difference in the oscillation 
frequencies imposed. At lower frequency, qs is larger. It is also seen that, a t  the higher 
frequency, the normalized amplitude is nearly unity beyond 7;1 % 0.4, indicating that 
the flow in this region oscillates almost like a solid body. I n  the same figure, the 
corresponding amplitude distribution calculated for both laminar flow (using the 
exact solution from Uchida 1956) and turbulent flow using the quasi-steady nu- 
merical method mentioned in Part 1 are shown. First, on comparing the experimental 
results with theoretical results for laminar periodic flow a t  the same frequency, 
significant differences can be observed. At both oscillation frequencies, the laminar 
flow exhibits sharper peaks than the turbulent flow. Also, the peaks (or overshoots) 
occur closer to the wall in the case of the laminar flow. In  fact, a t  0.5 Hz the contrast 
between laminar and turbulent flows is quite striking, with the turbulent flow 
exhibiting a very diffused peak and the maximum amplitude occurring around 
q = 0.5. Somewhat similar observations were made by Ramaprian & Tu (1980) at 
low Reynolds number. However, the contrast between turbulent and laminar flow 
was not as clear in the earlier experiments as in the present experiments, and hence 
the results were not conclusive. This is due to the very low (transitional) Reynolds 
number of the flow in the earlier experiments. Likewise, other experiments such as 
those of Hino, Sawamoto & Takasu (1976) and Binder & Kueny (1981), which were 

3.1. Amplitude and phase results for the ensemble-averaged properties 

3-2 
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FIGITRE 1 .  Amplitude anu phase of the ensemble-averaged velocity: (a )  amplitude; ( b )  phase: 0, 
3.6 Hz; A, 0.5 Hz; filled symbols represent wall-shear-stress da ta :  0 ,  3.6 Hz (for fundamental 
frequency) : #, 3.6 Hz (from shear-stress maximum) ; A, 0.5 Hz : -, laminar theory (Uchida 
1956) ; -. .-, present numerical calculations. 

performed a t  very low (transitional) Reynolds number, did not reveal significant 
departure from laminar-like response. The present experiments have very clearly 
demonstrated that the response of the turbulent flow to imposed external unsteadiness 
is not laminar-like. This is true over the range of frequencies of the imposed 
unsteadiness studied in the present experiments. 

I n  view of statements made above, i t  is interesting to compare the present 
experimental results with those obtained from the numerical model. The latter results 
are also shown in figure l ( a ) .  It is obvious that the predictions are closer to the 
experimental results than to laminar solutions especially with regard to the location 
ofthe peak and extent of the turbulent Stokes layer. However, important quantitative 
differences are observed between the predictions and the experimental results. At the 
high frequency, the predicted amplitude ratio remains practically unity in the central 
region. While this is in agreement with the experiment, it is seen that, near the wall, 
the measured magnitude of the amplitude overshoot is much larger than that pre- 
dicted. This again indicates that, in the core region, where the flow is nearly 'frozen' 
a t  some mean state, and where the inertia term is very much larger than the shear 
term, the quasi-steady turbulence model gives satisfactory results. Near the wall, 
where these conditions are not satisfied, the quasi-steady model works poorly. At 
lower frequency the experimental results exhibit a mild overshoot followed by smooth 
decrease to the centreline value. The calculation predicts practically no overshoot and 
deviates significantly from experiment near the centreline. Similar discrepancy exists 
near the wall but is not very clearly seen in the figure. This indicates that the 
quasi-steady turbulence model is not adequate to  describe the unsteady turbulent 
flow in this case. 

The phase-angle data are shown in figure 1 ( b ) .  Also shown in this figure are the 
results from laminar theory a t  the same frequencies (or the same Stokes number 
D = (oD/8v):)  as well as the results of the present numerical calculations. It is seen 



Fully developed periodic turbulent pipe $ow. Part 2 63 

that, in laminar flow, the velocity near the wall or the wall shear stress (as a limiting 
case) leads by nearly 95' the cross-sectional-average velocity at both the frequencies. 
However, both experiments and calculations in turbulent flow indicate very clearly 
that the phase lead is very much smaller than this. This confirms again that laminar 
and turbulent flows respond very differently to imposed periodicity and that Stokes 
number is not a relevant parameter to characterize adequately turbulent periodic pipe 
flow. Both experiments indicate that the local velocity leads the cross-sectional- 
average velocity and this lead increases continuously with radius reaching a maxi- 
mum value a t  a short distance from the wall. After this, the measured phase lead 
(surprisingly) seems to  decrease. This trend is seen particularly clearly at 0.5 Hz, in 
the velocity measurements close to the wall. The measured phase angle of the wall 
shear stress in each of the experiments is shown in figure 1 ( b )  by filled symbols. These 
results show that (the fundamental component of) the wall shear stress, in fact, lags 
behind the cross-sectional average velocity by about So a t  the high frequency of 
3.6 Hz. However, a reference to figure 10(a) of Part 1 shows that the maximum wall 
shear stress occurs about 8 O  ahead of the maximum in ( t 7 , ) .  This point is also shown 
in figure 1 ( b )  by a filled circle with a flag. The difference between the two results is 
due to the kink in the distribution of ( T ~ ) .  I n  any case, both the values of phase 
shift are within f loo around 0 and are consistent with the trend exhibited by the 
velocity data. This result has been confirmed by repeating the wall-shear-stress 
measurements several times. At 0.5 Hz, the measured phase lead of the wall shear 
stress is seen to be very nearly zero, which is also consistent with the trend shown 
by the velocity data near the wall. There has been a considerable controversy among 
research workers concerning the phase-angle distribution near the wall in turbulent 
boundary layers and pipe flows. The present measurements made by using two 
completely independent instrumentation and obtained from independent experiments 
indicate, albeit within some uncertainty range, that the magnitude of the phase 
lead/lag near the wall is very small in turbulent shear flows even a t  high oscillation 
frequencies. The present data are also in agreement with the earlier data of 
Ramaprian & Tu (1980). There are no other direct wall-shear-stress measurements 
in unsteady pipe flow reported in the literature. The validity of those which have been 
reported depend on the existence of the universal log law in unsteady flows (which 
was shown in Part 1 to be not true). Some wall-shear-stress measurements obtained 
using a flush-mounted gauge were reported by Simpson, Shivaprasad & Chew (1981) 
for unsteady boundary layers. These seem to support qualitatively the existence of 
a maximum close to the wall in the distribution of the phase angle across the shear 
flow. The data of Cousteix, Houdeville & Javelle (1981) (again for boundary layers) 
obtained via the assumption of a universal log law also seem to indicate such a 
distribution. 

Predictions of the present numerical calculations are again seen to be closer to the 
experimental results than are the results from laminar theory. For example, the 
turbulence model employed gives nearly correct values for the velocity phase lead 
over most of the pipe a t  3.6 Hz. The predicted phase angle increases monotonically 
towards the wall and does not show a maximum. However, the positive phase angle 
of about 18' predicted for the wall shear stress is very much lower than the laminar 
value of nearly 45'. At 0.5 Hz, the predictions are in some error across the entire pipe. 
Again no maximum phase lead near the wall is predicted. The predicted phase lead 
of the wall stress is in error by a few degrees only, while the laminar theory still 
predicts about 45' for the phase lead. The general conclusion that can be drawn from 
these comparisons is that the present quasi-steady turbulence model captures the 
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general features of the flow but fails to  follow the changes in flow with sufficient 
accuracy except when the flow itself behaves as 'frozen'. 

3.1.2. Turbulence intensity 
The results for the amplitude and phase of the ensemble-averaged turbulence 

intensities as defined in (4) are shown in figure 2. I n  figure 2 ( a )  the absolute amplitude 
of turbulence intensity is normalized with the time-mean value of cross-sectional- 
average velocity. At high frequency, the amplitude in the core region is small because 
of the frozen structure, as discussed earlier. Near the wall, the amplitude is rather 
high compared with that of quasi-steady flow experiments. Because of the experimental 
uncertainty in the measurement of the turbulence intensity, the quasi-steady ampli- 
tude distribution shows some distortion, especially a t  low modulation amplitudes, 
but is still acceptable for comparison. At the lower frequency of 0.5 Hz with a 
discharge amplitude of 64 yo, the amplitude of the turbulence intensity seems to be 
higher throughout the pipe than that obtained in quasi-steady flow of similar 
discharge amplitude. 

The phase shift of turbulence intensity with respect to the peak of cross-sectional- 
average velocity is shown in figure 2 ( b ) .  Both the experiments indicate a phase lag 
of the turbulence intensity across most of the pipe. There is, however, a tendency 
for the turbulence intensity to become in phase with the cross-sectional-average 
velocity in the vicinity of the wall. At higher frequency, the phase lag is higher than 
that at the lower frequency except a t  the central region (p 2 0.3), where, a t  high 
frequency, the turbulence intensity uk is frozen and hence the phase angle is not well 
defined. Note that the phase shift would be zero everywhere in the quasi-steady flow. 
No maximum or sign reversal is observed in the phase-angle distribution, in contrast 
to the case of the velocity. Also, there is a very large phase shift between the ensemble 
velocity (U,) and the turbulence intensity uk over most of the pipe. Thus the mean 
flow and turbulence structure are decoupled from each other. This can explain why 
quasi-steady models that  relate the turbulence structure to  the instantaneous local 
velocity gradient cannot be expected to  work well in this region. In  the same figures, 
the predicted phase-angle distributions of twice the turbulent kinetic energy 
( (qz)  = u : + v ~ + w ~ )  are also plotted for comparison. It is seen that the trend 
is qualitatively predicted. Quantitative difference, however, exists a t  both the 
frequencies. Rigorous comparisons, however, cannot be made since the relation 
between uk and ( q 2 )  is not well established in unsteady flow. 

3.1.3. Reynolds shear stress - ( u v )  

As discussed in Part 1, the prediction of Reynolds shear stress - (uv )  fails 
completely a t  high frequency. This can be clearly seen from figure 3 showing 
amplitude and phase relations of the shear stress. I n  this figure, the amplitude is 
normalized by the amplitude of the ensemble wall shear stress. It is seen that, at 
3.6 Hz, the amplitude of - (uv) reaches, at one location, a value as high as 3 times 
that of the wall shear stress. At this high frequency, the phase lead of - (uv) ranges 
from 270' to 300° (or a lag of 90'-60') everywhere in the whole section. This is 
completely different from either the trend predicted or the experimental results for 
turbulence intensity and ensemble-averaged velocity. This implies a complete 
breakdown of equilibrium in the turbulence structure. 

At the lower frequency of 0.5 Hz the experiments show qualitative agreement with 
the predicted values. (It should be noted that near the centreline, where the shear 
stress is nearly zero, there is a considerable uncertainty in the phase-angle determi- 
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FIGURE 2. Amplitude and phase of the longitudinal turbulence intensity u6. (a )  Amplitude: 0, 
3.6 Hz;A,0.5 Hz;----,quasi-steadyflowwithy., z O.6O;-,quasi-steadyflowwithyUm x 0.15. 
( b )  Phase: 0, 3.6 Hz; A, 0.5 Hz: -, numerical prediction for (a ' )  at 3.6 Hz;  ----, numerical 
prediction for ( q 2 )  a t  0.5 Hz. 
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FIGURE 3. Amplitude and phase of the Reynolds shear stress - (uz)): ( a )  amplitude; (b )  phase: 0. 
3.6 Hz; A, 0.5 Hz; -, prediction a t  3.6 Hz; ----, prediction a t  0.5 Hz. 

nation.) It is interesting to see that, at this frequency, there is a strong resemblance 
between the turbulence intensity ub and Reynolds shear stress ( u v )  with respect 
to the distributions of phase and amplitude. Therefore, even though the two 
turbulence quantities are completely out of phase with the velocity, they are 
mutually in step with each other. This implies the existence of some kind of 
equilibrium in the turbulent structure of the flow even though the flow is not 
quasi-steady, and even though the instantaneous ensemble-averaged turbulent 
structure is not related to the instantaneous ensemble-averaged velocity. Again, 
comparisons with numerical predictions are shown in figure 3. It is seen that, except 
for the amplitude a t  0.5 Hz, the dynamics of the ensemble-averaged Reynolds shear 
stress is predicted very poorly. 

3.2. Effect of oscillation frequency on the amplitude and phase angle - 
results of series 3 experiments 

The above results showed details of amplitude and phase-angle distributions of 
various properties of the flow at two oscillation frequencies, modulation of discharge 
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FIGURE 4. Ensemble-averaged velocity variation at centreline in the experiments of series 3: 
( a )  3.0 Hz; (b) 2.5 Hz; (c) 2.0 Hz; (d) 1.5 Hz; (e) 1.0 Hz; (f) 0.5 Hz. 

being 15% in one case and 64% in the other. As mentioned earlier, the third 
series of experiments were conducted a t  six oscillation frequencies to study the 
influence of oscillation frequency on the flow structure, maintaining all other 
conditions nearly constant. The ensemble-averaged velocities and longitudinal 
turbulence intensities at the centreline are shown in figures 4 and 5 for these 6 
frequencies. It should be noted that all the phase angles are now referred to the 
maximum of the centreline velocity ( U c )  instead of to the maximum of the 
cross-sectional-averaged velocity ( Urn) since the latter was not measured in this series 
of experiments. 

Figure 4 shows that the centreline velocity distributions a t  off-design frequencies 
arc slightly distorted and have slight differences in amplitude (again note that these 
amplitudes should also correspond approximately to the amplitude of the cross- 
sectional-averaged velocity). These are not considered to be significant for the 
purpose of the present discussions. It is seen from figure 5 that  the ensemble-averaged 
turbulent intensity ubc a t  the centreline exhibits clearly a cyclic variation a t  the 
lowest frequency (0.5 Hz), and the modulation of this variation is attenuated and 
becomes practically zero as the frequency is increased. The relative amplitude of 

0 
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FIGURE 5. Ensemble-averaged turbulence intensity at the centreline in the experiments of 
series 3:  ( a )  3.0 Hz; ( b )  2.5 Hz; (c) 2.0 Hz; ( d )  1.5 Hz; ( e )  1.0 Hz; (f) 0.5 Hz. 

e 

the turbulence intensity and its time-mean value are shown as a function of the 
imposed frequency in figure 6. It can be seen clearly that the relative amplitude 
yub, becomes smaller as the frequency is increased, from yub, = 13 % a t  f,,, = 0.5 Hz 
to 4 %  at f,, = 2.0 Hz. The corresponding value for the quasi-steady flow (zero 
frequency) with similar amplitude was obtained from the steady-flow experiments. 
This value (of about 21 yo) is also shown in the figure. Considering the experimental 
uncertainties in the measurement of ub (shown by the vertical bar in the figure), it  
can be concluded that the relative amplitude goes nearly to zero beyond a frequency 
of about 2 Hz. It is also interesting to see that the time-mean turbulent intensity uh 
at the centreline reaches a peak value in the frequency range 0.5-1.5 Hz and then 
decreases as frequency increases, and eventually attains a value approximately equal 
to that of the quasi-steady flow. The intensity of turbulence measured at  0.5 Hz and 
64 yo amplitude is also shown in this figure for comparison. It is seen that the effect 
of the amplitude yu, alone (largely a quasi-steady Reynolds-number effect) is not 
very significant. In  any case, it is not sufficiently larger than the experimental 
uncertainty indicated by the vertical bar, to require further comments. 
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The wall-shear-stress measurements a t  the six different frequencies are shown in 
figure 7 .  The distributions are seen to be reasonably smooth a t  the lower frequencies. 
At 3.0 Hz, some mild kinks begin to appear. These distortions are, however, not as 
strong as those observed a t  3.6 Hz in the earlier series of experiments. The time-mean 
wall shear stress and its relative amplitude are shown in figure 8. It is seen that the 
relative amplitude decreases as frequency increases from zero to 3.0 Hz. But the rate 
of decrease with frequency is small and, unlike the flow at centreline, does not go 
to zero even a t  3.0 Hz. I n  other words, the flow in the wall region still responds to 
the flow oscillations, though less ‘vigorously’ than a t  low frequencies. However, the 
time-mean wall shear stress does not show a consistent trend as the frequency is 
increased. The observed increase in time-mean wall shear stress a t  3.6 Hz is confirmed 
by this series of experiments also. It is also seen that at 0.5 Hz, the time-mean wall 
shear stress a t  64 % amplitude (0) is larger than that at 30 % amplitude of modulation 
(a). Again, this is to be expected from the quasi-steady results discussed in Part 1. 

The phase shifts of the centreline turbulence intensity and wall shear stress are 
shown in figure 9. It is seen that the wall shear stress leads the centreline velocity 
by a small angle. This angle increases to only about 10’ a t  3 Hz. The results for 3.6 Hz 
will be consistent with this trend if the phase angle corresponding to the maximum 
value of (7,) is used. On the other hand, the use of the phase angle for the 
fundamental Fourier component appears to depart from the trend. This is because 
of the kink in the distribution of (7,) already referred to. Both values are shown 
in figure 9. The apparent non-monotonic trend observed at 0.5 Hz is due to the phase 
shift of about -10’ of the centreline velocity itself, with respect to the cross- 
sectional-average velocity, which will decrease to (nearly) zero a t  higher frequencies. 
It is also interesting to see that the phase shift of the wall shear stress a t  0.5 Hz is 
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FIGURE 7. Ensemble-averaged wall-shear-stress variation in the experiments of series 3: (a) 3.0 Hz; 
( b )  2.5 Hz; ( c )  2.0 Hz; (d )  1.5 Hz; (e) 1.0 Hz; (f) 0.5 Hz. 

the same a t  30 yo as well as 64 yo amplitude. The phase shift of the turbulence intensity 
ubc a t  the centreline relative to  the centreline velocity is shown in the bottom part 
of figure 9. It is seen that the turbulence intensity lags behind the velocity and the 
phase lag increases drastically (0' to  360') in the frequency interval zero to  about 
1 .O Hz. At 2 Hz and beyond, the turbulence intensity is nearly frozen and hence phase 
shift cannot be accurately measured. It is also observed from the results a t  0.5 Hz 
that  amplitude of discharge modulation has no effect on the phase lag of ubc. 

The present results can be compared with the lag distribution implied by the 
measurements of Mizushina, Maruyama & Hirasawa (1975). They obtained, from 
autocorrelation measurements, the timelag Atc between the instants of peak tur- 
bulence intensity a t  the centreline and a t  (or near) the wall. They showed that 
the dimensionless time lag Atc Dm/D (phase lag) a t  the centreline in the unsteady flow 
approximately equals the dimensionless time-mean bursting period um/D in 
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FIGURE 8. Time-mean value and relative amplitude of the wall shear stress in the experiments of 
series 3. Flagged symbols and open circle as in figure 6. 
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FIGURE 9. Phase of ukc and (7,) in the experiments of series 3. Note that these phase angles shown 
in this figure are relative to the maximum of ( U , ) .  Open symbols as in figure 6;  half-filled circles 
correspond to the 7, data a t  3.6 Hz and yum = 15%. a, fundamental frequency; a, maximum 
value of (T,), -, equation (8); arrow denotes regime in which turbulence structure is frozen at 
the centreline. 
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steady flow and is independent of the oscillation frequency. They found from these 
experiments that, a t  a Reynolds number of 50000, 

Atcum Gum 
D D 

x 20. - (7) 

By writing Atc = #ub,T/2n, one gets from (7)  

$ubc = 407~Df,,/Ii,. (8) 

The straight line obtained by substituting in (8) the experimental values of D = 5 cm 
and urn = 1 m/s is also shown in figure 9. It is seen to agree well with the experimental 
data. The arrow in this figure shows the frequency beyond which the turbulence 
structure at the centreline can be expected to  be frozen because the disturbance from 
the wall cannot reach the centreline within one oscillation period T .  This requirement 
according to (7) is given by TU,/D 5 20, 
or equivalently 

f,, 2 om/20D x 0.9 Hz, (9) 

using again the experimental values of om and D .  The estimated value seems to be 
in agreement with observation as seen from figure 9. 

3.3.  Energy spectra of u' 

Figure 10(a) shows spectral density distributions of u ' ~  a t  two typical locations, 
namely r j  = 0.08 and 7 = 0.64 for unsteady flow a t  f,, = 3.6 Hz (spectrum 1) and for 
steady flow (spectrum 2 ) .  Also shown for each location is the spectrum (3) of ( I $ +  u ) ~ ,  
corresponding to the total velocity fluctuation before removing the deterministic part 
via ensemble averaging. These are all non-dimensional spectra in the wavenumber 
domain, with the non-dimensional spectral density G( KR) being defined in the usual 
way as follows: 

G(KR) = for spectra 1 and 2,  (10) 2nRu' 

Gr(t)  0 
G ( K R )  = ___ for spectrum 3, 

2nR( I7* + u)2 

where Gf( f )  is the spectral density function and h' is the wavenumber given by 

f being the frequency. With the above definitions, we have 

jam G(KR) d(KR) = 1 .  

Note that the spectrum 3 obtained without removing the periodic component exhibits 
a peak a t  the wavenumber corresponding to  the oscillation frequency. Referring first 
to the spectra a t  r j  = 0.08, one can see from a comparison of the spectra 1 and 2 that 
in the unsteady flow there is a reduction (of about 2576) in the spectral density a t  
the low-wavenumber end. Since the area under each spectrum has to be unity, the 
attenuation of the large eddies must be compensated by an increase in the energy 
content in the middle and high wavenumber range, as can be seen from figure 10(a). 
Figure 10 ( a )  also shows that, as r j  increases to 0.64, the attenuation of the low wave- 
number end becomes more significant. This decrease is accompanied by an increase 
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in the energy content of the higher wavenumbers. A careful observation of the two 
spectra in this figure reveals that imposed oscillations tend to  attentuate eddy scales 
larger than that corresponding to the oscillation frequency (peak of spectrum 3), this 
energy being transferred to larger wavenumbers as distance from the wall increases. 

Figure 10 (b)  shows typical spectra obtained in periodic flow a t  0.5 Hz and a t  the 
same locations in steady flow. The different spectra are labelled in these figures in 
the same way as in figure 10 (a) .  It is seen that the same trends present a t  the higher 
oscillation frequency are present a t  this frequency also. In  fact, the attenuation of 
wavenumbers smaller than that corresponding to the oscillation frequency is more 
pronounced in this case than at the higher oscillation frequency. The attenuation is 
stronger as the distance from the wall increases. The corresponding amplification of 
the high-wavenumber scales is also stronger than at the higher frequency of os- 
cillation. The spectra of u ' ~  are seen to exhibit periodicity around a wavenumber of 
0.4 corresponding approximately to half the oscillation frequency. This is perhaps 
due to the fact that, a t  0.5 Hz, the turbulent intensity was not frozen but varied 
significantly during the cycle (see figure 12(b) of Part 1).  The peaks are not very 
pronounced in the spectra for 3.6 Hz. 

3.4. Turbulent-energy production 

Figure 11 shows the variation of the rate of turbulent-energy production during the 
oscillation cycle a t  two typical locations in the pipe. Also shown is the rate of change 
of 3uf2 (which can be assumed to be representative of the rate of change of turbulent 
kinetic energy). First, with reference to figure 11 (a )  corresponding to 0.5 Hz, it is 
seen that a t  7 x 0.2 the turbulent energy increases (a(uk)/at > 0) during the period 
0' < 8 5 75O, and decreases to  its minimum value a t  about 180'. It is then almost 
frozen in that state till about 270' before beginning to  increase again. It is also 
observed that the maximum rate of production occurs during the retardation, as is 
to be expected. However, production lags behind velocity by about 45'. There is very 
little production during the first half of the acceleration period (0 = 180°-2700). Thus, 
near the wall, production is not in step with the mean flow field, and the turbulent 
energy is not in step with production. The upper part of figure 11 (a )  shows the results 
for the location 7 x 0.5. It is seen that a t  this station the rate of production of turbulent 
energy is very small and is out of phase with the velocity. Further, the turbulent 
kinetic energy is seen to be frozen a t  its minimum value over nearly half the cycle, 
and during this time there is practically no production of turbulence locally. I n  fact, 
production is very small, even near the wall, during this period. This steep drop in 
production is due to a decorrelation between the Reynolds shear stress and the 
velocity gradient. This indicates that the flow is not quasi-steady, and eddy- 
viscosity-type models relating the turbulence structure to  the local velocity gradient 
are not entirely realistic. Figure 11 ( b )  shows corresponding results for the oscillation 
frequency of 3.6 Hz. It is seen that a t  7 0.2 the rate of production shows a cyclic 
variation with maximum at 130O and minimum a t  270'. The a(u:)/at term is seen 
to be randomly scattered around zero, indicating a frozen turbulence structure. An 
important thing to note is that, a t  this high frequency, production is not zero a t  7 x 0.5 
except for a short interval of time (around 8 = 270°), unlike in the case of the 0.5 Hz 
experiment, in which production of turbulent energy remained practically zero for 
nearly half the cycle, at this same location. To sum up, it appears that, a t  the high 
frequency, turbulent production undergoes variations during a cycle (especially near 
the wall), but with a phase lag of more than 90' with respect to the velocity, while 
the turbulent kinetic energy seems to be practically frozen over most of the pipe. 

2 9  
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FIGURE 11. Variation of the ensemble-averaged rate of turbulent energy production P= 
- (UU) (a( U ) / a r ) )  and the rate of increase of ensemble-averaged turbulent kinetic energy 
( ( & / a t ) )  (assumed to be proportional to (33u:/at)): (a )  0.5 Hz; ( b )  3.6 Hz; 0, -PD/2[13,; V, 
3(au;/at) ~ / 2 @ * .  

Thus the turbulent kinetic energy, turbulent production and velocity field are 
decoupled from one another. 

4. Characteristic parameter for periodic turbulent pipe flow 
4.1. The 'turbulent Stokes number' 

It is known that, in the case of the unsteady laminar pipe flow, the Stokes number 
52 defined as iD(w/2v) i  is the only important parameter characterizing the flow. This 
number can also be interpreted as the ratio of two characteristic lengthscales, namely 
the pipe radius and the viscous length (2vlw)J. The latter is a measure of the radial 
distance from the wall toward the centre that any disturbance a t  the wall can reach 
by means of diffusion within one period of the cycle. In an analogous manner, one 
may use a modified Stokes number for turbulent flow by replacing the kinematic 
viscosity v in laminar flow by some eddy viscosity vt in turbulent flow. Then the 
diffusion distance y in time t is given by 

or 

Differentiating (1 5), one gets 
dt 2y y2dut 
dy vt v t d y '  
- = --_- 
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In  order to  make a qualitative analysis, let us assume a simple time-independent 
distribution of vt as follows: 

- 
vt = KUjy (y < yo; inner layer), ( 1 7 )  

= & o j D  (yo < y < gD; outer layer), (18) 

where uj is the time-mean shear velocity, K and c are constants ( K  being the well- 
known von Karman constant, assumed to  be equal to 0.4), and yo is determined from 
the matching condition - 

K / f +  yo = $cj D ,  
as 

C D  
y ---. 

O - K 2  
(20) 

From (16)-(18), and integrating from the wall, one gets, for the inner layer (y < yo), 

t = - z ,  ( 2 1 )  
Y 

K u* 
and integrating from yo outwards one gets 

y2-$ = &O*D(t- t0) ,  (2.2) 

where to = yO/Kg* is the time of diffusion up to y = yo. From (22) ,  one finally obtains 
the total time of diffusion up to any point y as 

In  other words, the diffusion time (in the outer layer) can be computed using the 
constant eddy viscosity vtouter in place of the laminar viscosity v .  Since vtouter + v ,  
the diffusion time in turbulent flow is very much smaller - usually 2-3 orders of 
magnitude smaller - than that in laminar flow. Rearrangement of (23)  gives 

Also, the total time 

O*t 1 -- - - 7 2 .  
D 2c 

D 1  

2u* c 
Atc = y-. 

If c is taken as 0.07 from Hinze (1959). one obtains 

At, = 7 . 1 5 D / g j .  (261 

Hence, in a periodic flow of circular frequency w = 2xfOs, the disturbance can diffuse 
from the wall to the centreline within one oscillation period 2x/w,  if Atc < 2 x / w ,  which 
gives the condition 

(27 1 

Thus wD/ u, is the equivalent turbulent Stokes number to characterize periodic 

WD 
: 5 0.88 x O(1).  u* 

turbulent flow. Since 
8Q2 wD - wD2 8v - 

a* 8 v  g j D  o jD , / v ’  

the turbulent Stokes number is very much smaller than the conventional (laminar) 
Stokes number for the same frequency, and the ratio of turbulent to laminar Stokes 
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number decreases as the Reynolds number o*D/i)  increases. Hence what may be 
regarded as a large oscillation frequency in laminar flow (52 % 1 )  may not be large 
or may even be regarded as low frequency in turbulent flow, depending on the value 
of w D / g * .  This explains the drastic differences between the behaviour of laminar and 
turbulent periodic flows a t  the same oscillation frequency (see figure 1). In  the same 
way, it is now clear that categorizing turbulent pipe flows by the so-called Strouhal 
number w D / u m  is also not very useful, since w D / u m  = (wDjU,)  U*/um, and hence 
the behaviour of the flow will depend on the Reynolds number also. 

The above discussion indicated the extent to which disturbances from the wall can 
spread in the turbulent periodic flow. For instance, a t  w D / o ,  + 1 ,  the unsteady 
effects would diffuse throughout the pipe, with the result that  the ensemble-averaged 
velocity at all points in the pipe will suffer amplitude variation and phase shift 
relative to the cross-sectional-averaged flow. At w D / u ,  9 1 ,  these effects would be 
confined to a very thin layer of thickness of the order of u * / w  beyond which the flow 
would oscillate like a solid body. I n  fact, a careful study of figure 1 shows that the 
thickness of the turbulent Stokes layer (say location of the peak amplitude) is given 
approximately by o * / w .  

4.2. The use of the turbulent Stokes number in the classi$cation of 
periodic turbulent shear jlows 

The turbulent Stokes number is a measure of the relative distance from the wall up 
to which the unsteady effects will penetrate. No consideration was given in its 
derivation to  the interaction of the turbulence structure and imposed oscillations. I n  
fact, in the derivation of the Stokes parameter, (Us> is assumed to be approximated 
by its average value u*, which is regarded as known. Whether the turbulent structure 
is affected by unsteadiness or not depends on whether the oscillation frequency w 
(or fos) interacts with a characteristic frequency of turbulence ft. The characteristic 
frequency that can be used for this purpose is the so-called ‘turbulent bursting 
frequency ’. Considerable information (though conflicting) is available on this 
frequency in turbulent boundary layers. However, as far as the authors are aware, 
the only such data reported on pipe flows are those of Mizushina, Maruyama & 
Shiozaki (1973). They measured not only the mean bursting period !& but also the 
histogram of the intervals between the bursts. They found that, in the Reynolds- 
number range 103-105, the lower and upper ends of the histogram TbL and Tbu, as well 
as the mean burst period G, depend on Reynolds number. The following approximate 
relations can be obtained from their measurements (see Ramaprian & Tu 1982): 

wbLD/o*  x 166Re-0.54, (29 1 

where w is the circular frequency 2n/T in each case. 
We can now combine the information on the interaction between unsteadiness and 

turbulent structure with the diffusion information obtained earlier in 54.1 to classify 
the periodic flow into several regimes. 

These results are shown in figure 12. I n  this figure, the three lines corresponding 
to (29)-(31) are shown. I n  addition, a fourth line (chain-dotted) is also shown in this 
figure. This line is obtained from Mizushina et al. (1975) and corresponds to the 
oscillation frequency a t  which the modulation amplitude yv, is attenuated by 5 yo 
relative to  the quasi-steady value. This line can be arbitrarily defined as the 
‘ quasi-steady ’ line. 
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FIGURE 12. Classification of unsteady turbulent shear flows: (>, Ramaprian & Tu (1980); 0 ,  present 
experiments; A, Mizushina et al. (1973, 1975); V, Gerard (1971); 0, Binder & Kueny (1981); 0 ,  
Kita, Adachi & Hirose (1979); 0 ,  Cousteix et al. (1981); A. Kirmse (1980); 0, Simpson, 
Shivaprasad & Chew (1981) ; 0 ,  Ohmi et a2. (1976) ; m, Karlsson (1959) ; , Acharya & Reynolds ; 
A ,  Schultz-Grunow (1940); A, Kobashi & Hayakawa (1981); -.-, quasi-steady line from 
Mizushina et al. (1975). -. .-, wbL (equation (29)); -----, wb (equation (30)); . . . . . ., wllu 
(equation (31)). Note that, in the case of boundary-layer data, time-mean freestream velocity U,  
and-time-mean boundary-layer thickness 6 are used as reference velocity and lengthscales in place 
of Urn and 4D respectively. 

- -  
V V 

It is interesting to note from figure 12 that the lower limit of the burst histogram 
corresponds to a value of wbLD/U* of the order 1 (In fact for Re > lo4, wbLL)/U, 
is seen to  be less than 1). Thus, when the oscillation frequency is such that wD/u*  - 1 ,  
not only does the imposed unsteadiness begin to influence the turbulence structure 
but, also, this effect can spread across the entire flow. This experimental observation 
removes the erroneous belief that  a t  oscillation frequencies high enough to interact 
with turbulence structure the effects are confined to a negligibly thin layer and that 
flow prediction a t  such frequencies does not therefore present difficulties from a 
practical point of view. 

We can now proceed to classify the unsteady flow into 5 regimes based on the value 
of w D / u *  and the Reynolds number. These five regimes are indicated in figure 12. 
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Regime I 

It is seen from the figure that in this regime wD/ o* 5 (wD/g*)quasi.steady, and hence 
the flow behaves like steady flow. Hence, there will be no amplitude overshoot and 
no phase lag of the ensemble averaged velocity. Further, since wD/g*  < wbLD/u' ,  
turbulent' structure is also quasi-steady. Hence a quasi-steady turbulence closure 
model can describe this flow at all instants. I n  fact, the ensemble averaged flow can 
be solved as a succession of steady flows. This regime can be designated as the 
'quasi-steady regime'. I n  this regime wD/g*  5 lop1. 

Regime I I  
The flow departs from quasi-steady behaviour, the departure increasing with the 

value of wD/ o*. The effect of oscillation on the ensemble-average velocity field will 
spread across the entire shear layer. The turbulent structure, however, is not affected 
since wD/ g* is still less than wbL D/ o*. Hence a quasi-steady turbulence model can 
still be used to predict the flow. However, it is necessary to perform a time-dependent 
calculation to predict the time history of the flow. Amplitude overshoot and phase 
lag will be present all across the shear layer in the periodic component of the velocity. 
The t'ime-mean flow will not be significantly different from that of the quasi-steady 
flow. This regime may be called the 'low-frequency regime'. I n  this regime the 
condition 10-l < oB/o* ,< 1 is satisfied a t  the higher Reynolds numbers. 

Reyi,me I I I  
In t,his regime w b L D / o *  < wD/o*  < GbD/U*. Hence one can expect to find some 

interaction between the turbulence structure and the imposed unsteadiness. The 
int,eraction will begin from the lower end of the burst frequency histogram and spread 
to higher frequencies as wD/u*  increases. This causes the turbulent structure to be 
aEected. This effect spreads across a substantial part of the shear layer. Both the 
periodic and turbulent structure across a substantial part of the flow will deviate from 
the quasi-steady flow. The deviation a t  a given Reynolds number tends to be 
great,er as oscillation frequency increases. Quasi-steady turbulence models will begin 
to fail and become increasingly unsatisfactory as wD/ g* increases. The structural 
equilibrium of turbulence may begin to break down a t  least during a part of the cycle. 
The time-mean flow will still be nearly the same as in quasi-steady flow, especially 
a t  t'he lower frequencies. This regime can be called the ' intermediate-frequency 
regime', and is approximately characterized by 1 6 wD/g* < 10. The present ex- 
periment a t  0.5 Hz (wD/O* % 3) exemplifies this regime. 

Regime IT' 
The imposed oscillation will interact strongly with the turbulent bursting process 

a t  the wall. The effect on the turbulent structure is therefore strong. The time-mean 
velocit-v will be affected and can exhibit an inflective profile near the wall. The periodic 
flow will also be affected but, since wD/o* is large in this regime, this effect is confined 
t,o a thin region (say, less than 10 o/o of the diameter) beyond which the flow oscillates 
like a solid mass. The turbulence structure will exhibit total departure from 
equilibrium. In fact, the turbulence intensity remains practically frozen across the 
ouher part, of the shear layer. Quasi-steady turbulence modelling breaks down 
completely. Yet calculations based on quasi-steady turbulence models still predict 
the periodic flow in the outer layer reasonably well, since the turbulent shear-stress 
t'erm i s  almost negligible compared with the pressure-gradient term a t  this frequency 
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in this region. In  other words, the periodic flow in the outer region behaves like an 
inviscid flow. This regime in which wD/D* is of the order of 10 can be called the 
‘ high-frequency regime ’. The present experiment a t  3.6 Hz with OD/ g* z 20 falls into 
this regime. 

Regime V 
I n  this region wDlU* > wbu D/c*. This regime can be called the ‘rapid-oscillation 

regime’. wD/O* will be typically of the order of 100 in this regime. Hence the 
interaction between the imposed oscillations and the turbulence structure will be very 
strong. The effect on the periodic flow will, however, be confined to a very thin layer 
(of the order of 0.01D) near the wall. Very little information is presently available 
on the turbulence structure in this regime. 

Many of the recent experiments on periodic pipe and boundary-layer flows are 
shown in figure 12 in terms of the turbulent Stokes number us. Reynolds number. (In 
the case of the boundary layer &D is replaced by the mean boundary-layer thickness 
8. Also, the boundary-layer results should be interpreted with caution since the burst, 
information used in the present discussion was obtained from pipe-flow experiments 
and is at some variance with boundary-layer data.) These experiments can now be 
discussed in the light of the above classification of unsteady flows. It is seen that most 
experiments have been performed in regimes I11 and IV, which are the most’ 
important regimes from a practical point of view. The present experiments a t  0.5 Hz, 
and the experiments of Mizushina et al. (1973, 1975), Kobashi & Hayakawa (1981) 
and Cousteix et al. (1981) in the ‘intermediate-frequency ’ range, indicate a significant 
influence of oscillation frequency on the turbulent structure and negligible effect on 
time-mean flow. The others do not contain detailed information on turbulence. The 
present experiments have also shown that there is a small effect on the time-mean 
flow (which is generally hard to  detect). There are fewer detailed experiments in the 
‘ high-frequency ’ range. Since the effects of oscillation are confined to smaller regions 
and also effects on time-mean velocity and wall shear stress are generally of the order 
of only 10 yo, large amplitudes and good experimental accuracy are required to detect’ 
these effects. The experiments of Ohmi et al. (1976) and Kirmse (1979) do not contain 
turbulence data. The amplitude of modulation was very small in the experiments of 
Acharya& Reynolds (1975) andBinder & Kueny (1981). Karlsson’s (1959)experiment’s 
on boundary layers seem t.0 indicate that the turbulence structure is affected, hut 
the measurements are not very reliable. Cousteix et al. (1981) did observe that the 
turbulence structure was affected by oscillation. However, they did not makc 
wall-shear-stress measurements, which are essential for the understanding of the flow 
a t  high frequencies. The experiments of Mizushina et al. (1975), Ramaprian & T u  
(1980) and the present experiments are the only ones in this regime that provide 
details of the flow structure. The data of Mizushina et al. largely agree with the present 
measurements, but do not contain wall-shear-stress measurements. In fact, more 
measurements of wall shear stress are needed to strengthen the observations made 
in the present study. 

5 .  Conclusions 
The following are the major conclusions that can be drawn from the study reported 

in this paper. 
(1) The Stokes number SZ used to characterize periodic laminar pipe flow is not 

appropriate for describing the periodic turbulent pipe flow. In  fact, the effect of 
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unsteadiness in periodic turbulent flow spreads over a distance that can be several 
orders of magnitude larger than the thickness (2v/w)i of the conventional Stokes layer 
for the same frequency. The analogous parameter characterizing (at least the outer 
part of) the unsteady turbulent flow is wD/U, ,  which can be called the ‘turbulent 
Stokes number’. This number has the primary significance of being proportional to 
the ratio of the pipe radius to the turbulent, diffusion distance in one oscillation period. 
However, it turns out that this parameter can also be used to study, at any given 
Reynolds number, the interaction of the imposed oscillation with the turbulent 
bursting process. Using this parameter, the imposed oscillation in periodic turbulent 
shear flows can, in principle, be classified into five regimes, namely quasi-steady, 
low-frequency , intermediate-frequency , high-frequency and rapid-oscillation. 

(2) The maximum phase shift of wall shear stress (relative to the cross-sectional- 
average velocity) over the frequency range studied (intermediate and high) is of the 
order of loo, which is considerably less than that in laminar flow. The phase angle 
of the velocity is completely different in distribution from that in laminar flow a t  the 
same oscillation frequency. Ensemble-averaged turbulence intensities and Reynolds 
shear stress experience very large phase shifts. These phase shifts increase with the 
oscillation frequency. The turbulence properties are thus delinked from the local flow 
both in the intermediate- and high-frequency ranges. 

(3) Spectral measurements show that turbulent frequencies smaller than the 
imposed oscillation frequency will be attenuated. Consequently, the integral timescale 
will be smaller in the unsteady flow than in steady flow a t  the same time-mean 
Reynolds number. 

(4) The ensemble-averaged rate of turbulent-energy production appears to undergo 
drastic changes during the cycle at the intermediate frequency of oscillation. It is 
more or less frozen and resembles steady-flow behaviour a t  the high frequency of 
oscillation. 

The present study was supported by the U.S. Army Research Office Grant 
DAAG29-79-G-0017, and the authors gratefully acknowledge this support. 
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